Exercice 1 -

Soit (u_n) la suite définie par $u_0 = 3$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{2u_n}{4u_n + 2}$. Soit (v_n) la suite définie pour tout $n \in \mathbb{N}$ par $v_n = \frac{1}{u_n}$

- 1) Montrer par récurrence que (u_n) et (v_n) sont bien définies.
- 2) Déterminer la nature de la suite v_n .
- 3) En déduire une expression de v_n en fonction de n, puis une expression de u_n en fonction de n.

Exercice 2

Soit (u_n) la suite définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{3}{2}u_n - 1$.

- 1) Pour tout $n \in \mathbb{N}$, on pose $v_n = u_n 2$. Montrer que v_n est une suite géométrique dont on déterminera la raison.
- 2) En déduire une expression du terme général de (u_n) .
- 3) En déduire la limite de (u_n) lorsque $n \to +\infty$

Exercice 3 -

On considère la suite (u_n) définie par $u_0 = 9$ et pour tout $n \in \mathbb{N}$ par $u_{n+1} = \frac{u_n - 3}{2}$. Déterminer une expression du terme général de (u_n) puis déterminer la limite de (u_n) si elle existe.

Exercice 4

On considère la suite (u_n) définie par $u_0 = 2$ et pour tout $n \in \mathbb{N}$ par $u_{n+1} = -2u_n + 5$. Déterminer une expression du terme général de (u_n) puis déterminer la limite de (u_n) si elle existe.

Exercice 5

Déterminer une expression de (u_n) en fonction de n dans chaque cas.

- 1) (u_n) est la suite définie par $u_0 = 3$, $u_1 = 8$, et $\forall n \in \mathbb{N}$, $u_{n+2} = 4u_{n+1} 2u_n$.
- 2) (u_n) est la suite définie par $u_0=0, u_1=1$ et $u_{n+2}=2u_{n+1}-\frac{3}{4}u_n$

— Exercice 6 -

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = 3\cos\left(\frac{2\pi}{3}n\right) - \sqrt{3}\sin\left(\frac{2\pi}{3}n\right)$.

Montrer que u_n vérifie :

$$\begin{cases} u_0 &=& 3 \\ u_1 &=& -3 \\ u_{n+2} &=& -u_{n+1}-u_n \end{cases}$$

Exercice 7

Étudier dans chaque cas la limite de la suite (u_n) . On pourra utiliser un nombre dérivé.

- 1) $\forall n \in \mathbb{N}^*, \ u_n = \frac{\cos(1/n) 1}{1/n}$
- 2) $\forall n \in \mathbb{N}^*, \ u_n = n \ln \left(1 + \frac{1}{n} \right)$

- 3) $\forall n \in \mathbb{N}^*, \ u_n = n \sin\left(\frac{1}{n}\right)$
- 4) $\forall n \in \mathbb{N}^*, \ u_n = n(e^{-1/n} 1)$

Exercice 8 -

Étudier la limite des suites suivantes :

1)
$$\forall n \in \mathbb{N}, \ u_n = n^2 + e^{-n^2 \cos(n)}$$

2)
$$\forall n \in \mathbb{N}, \ u_n = n^2 \sin n - n^3$$

3)
$$\forall n \in \mathbb{N}, \ u_n = (\ln n)^{1/n}$$

$$4) \ \forall n \in \mathbb{N}, \ u_n = \frac{\sin n}{n}$$

5)
$$\forall n \in \mathbb{N}, \ u_n = \frac{n(-1)^n - n^2}{3n^2 + 1}$$

Exercice 9

TD 6 : Suites numériques

Déterminer la limite des suites suivantes :

1)
$$e^{-0.001 \times n} n^{2021}$$

2)
$$n! e^{-n}$$

3)
$$(3n)! e^{-n}$$

4)
$$\frac{(\ln n)^{2021}}{\sqrt{n}}$$

Exercice 10

Déterminer dans chaque cas la limite de la suite (u_n)

a)
$$u_n = \frac{e^{2n-1} + e^{n^2}}{e^{n^2+2}}$$

$$c) u_n = \ln(1+n) - \ln(n)$$

e)
$$u_n = \frac{(8n^3+1)^{\frac{1}{3}}}{(9n^2+1)^{\frac{1}{2}}}$$

b)
$$u_n = \frac{\sqrt{n^2 - n + 1}}{\sqrt{4n^2 + 2n + 1}}$$

d)
$$u_n = \ln(n) + \ln(2n+1) - 2\ln(n)$$

f)
$$u_n = \frac{\sqrt{\ln(n)}}{\ln(\sqrt{n})}$$

Exercice 11

Déterminer dans chaque cas la limite de la suite (u_n)

a)
$$u_n = \frac{\sin\left(\frac{1}{n}\right)}{\ln(n+1) - \ln(n)}$$

$$b) u_n = n \left(e^{\frac{2}{n}} - 1 \right)$$

c)
$$u_n = \frac{4n^3 + 2n + 1}{3\ln(n^{2022} + e^n)}$$

Exercice 12

Déterminer dans chaque cas la limite de la suite (u_n)

a)
$$\forall n \in \mathbb{N}, \ u_n = \frac{3n^2 - 4}{6 - 7n^2}$$

c)
$$\forall n \in \mathbb{N}, \ u_n = \frac{1 - \sqrt{n\cos^2(n)}}{n\sqrt{n}}$$

b)
$$\forall n \in \mathbb{N}, \ u_n = \frac{2n^2\sqrt{n} - 3}{2 - n^3}$$

d)
$$\forall n \in \mathbb{N}, \ u_n = \sqrt{n+1} - \sqrt{n}$$

Exercice 13

Déterminer dans chaque cas un équivalent simple de u_n

a)
$$u_n = \sqrt{n+50}$$

c)
$$u_n = \frac{\sqrt{1 + 2n + 5n^2}}{\ln(1 + n^2)}$$

e)
$$u_n = \frac{e^{1/n} + \cos(e^{-n})}{\sqrt{n^4 + n + 1}}$$

b)
$$u_n = n^4 + 2e^{-n} + \frac{1}{n} - n^3 - n^2$$
 d) $u_n = \sin\left(\frac{\ln(n)}{n + \sqrt{n}}\right)$

d)
$$u_n = \sin\left(\frac{\ln(n)}{n + \sqrt{n}}\right)$$

f)
$$u_n = n^3 (e^{\frac{a}{\sqrt{n}}} + e^{\frac{b}{n}} + e^{\frac{c}{n^2}} - 3)$$

Exercice 14

Soit (u_n) la suite définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = \frac{u_n^2 + 1}{2}$.

- 1) Montrer que la suite (u_n) est croissante.
- 2) Déterminer, selon la valeur de u_0 , la limite de la suite (u_n)

Exercice 15

Soit (u_n) la suite définie par $u_1 = 1$ et $u_{n+1} = u_n + \frac{1}{u_n^2}$.

- 1) Montrer que la suite (u_n) est bien définie
- 2) Étudier la monotonie de la suite (u_n)
- 3) Montrer que $\lim_{n \to +\infty} u_n = +\infty$.

* * Exercice 16 -

- 1) Pour tout $n \in \mathbb{N}$, on pose $f_n(x) = x^n + \ln x$. Montrer que l'équation $f_n(x) = 0$ admet une unique solution dans]0;1[. On note u_n cette solution.
- 2) Soit $n \in \mathbb{N}$. En exprimant $f_{n+1}(u_n) f_n(u_n)$ de deux façons différentes, déterminer le signe de $f_{n+1}(u_n)$ puis en déduire que (u_n) est croissante
- 3) Justifier que (u_n) converge vers un réel ℓ , puis montrer que $\ell=1$.

* * Exercice 17 -

- 1) Pour tout $n \in \mathbb{N}^*$, justifier que l'équation $\tan x = x$ admet une unique solution dans l'intervalle $] \frac{\pi}{2} + n\pi; \frac{\pi}{2} + n\pi[$. On note x_n cette solution.
- 2) Justifier que $x_n \sim n\pi$

Exercice 18

Soient (u_n) et (v_n) deux suites définies par $u_0, v_0 \in \mathbb{R}_+^*$ avec $u_0 < v_0$, et pour tout $n \in \mathbb{N}$

$$u_{n+1} = \sqrt{u_n v_n}$$
 et $v_{n+1} = \frac{u_n + v_n}{2}$

- 1) Montrer que pour tout $n \in \mathbb{N}$, $0 < u_n < v_n$
- 2) Montrer que pour tout $n \in \mathbb{N}$, $v_n u_n \leq \frac{1}{2^n}(v_0 u_0)$
- 3) Montrer que (u_n) et (v_n) sont adjacentes. Conclure.

* * * Exercice 1

Soit (u_n) une suite définie sur \mathbb{N}^* qui converge vers un réel ℓ , et soit (w_n) la suite définie pour tout $n \in \mathbb{N}^*$ par

$$w_n = \frac{1}{n} \sum_{k=1}^n u_k = \frac{u_1 + u_2 + \dots + u_n}{n}$$

En utilisant la définition de la limite, montrer que $\lim_{n\to+\infty}w_n=\ell$ (ce résultat est connu sous le nom de **Théorème de Cesàro**).

* * Exercice 20

Soient (u_n) et (v_n) deux suites de réels strictement positifs telles que

 $\forall n \in \mathbb{N}, \ \frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$

Montrer que si $\lim_{n\to+\infty} u_n = +\infty$, alors $\lim_{n\to+\infty} v_n = +\infty$.

Dans cet exercice, on considère la suite (H_n) définie pour tout entier naturel non nul n par

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

1) Soient (u_n) et (v_n) les suites définies pour tout entier naturel n non nul par :

$$u_n = H_n - \ln(n)$$
 et $v_n = u_n - \frac{1}{n}$

- a) Montrer que pour tout réel x > -1, on a $\ln(1+x) \le x$. Indication : On pourra étudier la fonction $f: x \longmapsto x - \ln(1+x)$.
- b) Montrer que (u_n) est une suite décroissante et que (v_n) est une suite croissante.
- c) Montrer que (u_n) et (v_n) convergent vers une même limite γ .
- d) En déduire un équivalent simple de H_n
- e) Montrer que $\gamma > 0$.

Exercice 22

Soit a > 0 un réel. On considère la suite $(u_n)_{n \in \mathbb{N}^*}$ définie par $u_1 = a$ et pour tout $n \in \mathbb{N}^*$, $u_{n+1} = \sum_{k=1}^n \frac{3^k u_k}{k}$

- 1) Montrer par récurrence simple que pour tout entier $n \in \mathbb{N}^*$, $3^n \ge n+2$
- 2) Montrer par récurrence forte que pour tout $n \in \mathbb{N}^*$, $u_n \geq an$
- 3) En déduire la limite de (u_n) .

Exercice 23

Soient (u_n) et (v_n) deux suites telles que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 2$ et $0 \le v_n \le 3$. On suppose que $(u_n v_n)$ converge et que $\lim_{n \to +\infty} u_n v_n = 6$. Montrer que (u_n) et (v_n) sont convergentes et préciser leurs limites.

Exercice 24

On considère la suite (u_n) définie par $u_0 = 0$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{e^{2u_n}}{e^{u_n} + 1}$

On pose $f(x) = \frac{e^{2x}}{e^x + 1}$.

- 1) Étudier les variations de f sur \mathbb{R}
- 2) Montrer que pour tout $n \in \mathbb{N}$, u_n et u_{n+1} sont bien définis et $0 \le u_n \le u_{n+1}$
- 3) Montrer que pour tout réel $x \in \mathbb{R}$, $e^x \ge 1 + x$.
- 4) En déduire que l'équation f(x) = x n'a aucune solution réelle. Conclure sur la limite de (u_n) .

Exercice 25

Le but de cet exercice est de montrer que $\lim_{n \to +\infty} \frac{e^n}{n!} = 0$.

On pose pour tout $n \in \mathbb{N}$, $u_n = e^n$ et $v_n = n!$.

- 1) Montrer qu'il existe un entier n_0 tel que pour tout $n \ge n_0$, $\frac{u_{n+1}}{u_n} \le \frac{1}{2} \frac{v_{n+1}}{v_n}$
- 2) En déduire qu'il existe une constante C > 0 telle que pour tout $n \ge n_0$ on a $u_n \le C \left(\frac{1}{2}\right)^{n-n_0} v_n$.
- 3) Conclure.

- 1) Dans cette question on démontre le théorème de Césàro (voir exercice 19) dans un cas particulier. On considère une suite (a_n) croissante qui converge vers un réel ℓ et on pose, pour tout entier $n \in \mathbb{N}^*$, $b_n = \frac{1}{n} \sum_{k=0}^{n-1} a_k$.
 - a) Établir, pour tout entier naturel n non nul, l'inégalité $b_n \leq a_n$
 - b) Montrer que la suite (b_n) est croissante.
 - c) Montrer que la suite (b_n) converge vers un réel ℓ' qui vérifie $\ell' \leq \ell$.
 - d) Établir, pour tout entier naturel n non nul, l'inégalité $b_{2n} \geq \frac{b_n + a_n}{2}$
 - e) En déduire que $\lim_{n\to+\infty} b_n = \lim_{n\to+\infty} a_n$.
- 2) On se propose d'étudier maintenant la suite (u_n) définie par $u_0 = 1$ et pour tout entier naturel n, $u_{n+1} = \sqrt{u_n^2 + u_n}$.
 - a) Montrer que pour tout entier naturel n, u_n est bien défini et supérieur ou égal à 1.
 - b) Montrer que (u_n) est croissante.
 - c) Montrer que si (u_n) converge vers un réel ℓ , alors $\ell = 0$. Conclure sur la limite de (u_n) .
- 3) Recherche d'un équivalent de u_n
 - a) Montrer que $\lim_{n \to +\infty} (u_{n+1} u_n) = \frac{1}{2}$
 - b) Étudier les variations de la fonction $f: x \mapsto \sqrt{x^2 + x} x$, puis en déduire que la suite $(u_{n+1} u_n)$ est croissante.
 - c) Utiliser la première question pour établir que $u_n \underset{n\to+\infty}{\sim} \frac{n}{2}$.

Le but de cet exercice est de démontrer l'irrationalité du nombre e. On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par

$$\forall n \in \mathbb{N}, \quad u_n = \sum_{k=0}^n \frac{1}{k!} \quad \text{et} \quad v_n = u_n + \frac{1}{n \times n!}$$

- 1) Montrer que (u_n) et (v_n) sont adjacentes. En déduire qu'elles convergent vers une même limite ℓ et que pour tout $n \in \mathbb{N}$ on a $u_n < \ell < v_n$.
- 2) Montrer par l'absurde que ℓ est irrationnel.
- 3) En utilisant une intégration par parties, montrer par récurrence sur n que

$$\forall n \in \mathbb{N}, \quad \mathbf{e} = \sum_{k=0}^{n} \frac{1}{k!} + \int_{0}^{1} \frac{(1-t)^{n}}{n!} \, \mathbf{e}^{t} \, \mathrm{d}t$$

- 4) Montrer que pour tout $n \in \mathbb{N}^*$, $\left| \int_0^1 \frac{(1-t)^n}{n!} e^t dt \right| \leq \frac{1}{n!}$
- 5) En déduire que $\lim_{n \to +\infty} u_n = e$. Conclure.

